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Stability of an axially accelerating viscoelastic beam constituted by the standard linear

solid model is investigated. The material time derivative is used in the viscoelastic

constitutive relation. The instability condition is determined for combination and

principal parametric resonances via the asymptotic analysis. The differential quadrature

transverse motion of axially accelerating viscoelastic beams. The stability boundaries

are numerically located in the excitation amplitude and the excitation frequency plane.

Numerical simulation demonstrates the effects of the stiffness, the viscosity and

constant mean speed of beam. The numerical calculations validate the analytical results

in the principal parametric resonance.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Axially moving beams can represent many engineering devices [1–3]. As parametric vibration excited by the variation of
the beam tension or the beam axial speed, large transverse motion of axially moving beams may occur under certain
conditions.

Transverse parametric vibration of axially accelerating elastic beams has been extensively analyzed since first study by
Pasin [4]. Öz et al. [5] employed the method of multiple scales to study dynamic stability of an axially accelerating beam
with small bending stiffness. Özkaya and Pakdemirli [6] combined the method of multiple scales and the method of
matched asymptotic expansions to construct nonresonant boundary layer solutions for an axially accelerating beam with
small bending stiffness. Öz and Pakdemirli [7] and Öz [8] applied the method of multiple scales to calculate analytically the
stability boundaries of an axially accelerating beam under pinned-pinned and clamped-clamped conditions, respectively.
Parker and Lin [9] adopted a 1-term Galerkin discretization and the perturbation method to study dynamic stability of an
axially accelerating beam subjected to a tension fluctuation. Özkaya and Öz [10] used an artificial neural network algorithm
to determine stability boundary of an axially accelerating beam. Suweken and Horssen [11] applied the method of multiple
scales to a discretized system via the Galerkin method to study the dynamic stability of an axially accelerating beam with
pinned–pinned ends. Pakdemirli and Öz [12] employed the method of multiple scales to analyze the stability in the
resonances involved up to four modes.
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In addition to elastic beams, axially accelerating viscoelastic beams have recently been investigated. Chen et al. [13]
applied the averaging method to a discretized system via the Galerkin method to present analytically the stability
boundaries of axially accelerating viscoelastic beams with clamped–clamped ends. Chen and Yang [14] applied the method
of multiple scales without discretization to obtain analytically the stability boundaries of axially accelerating viscoelastic
beams with pinned–pinned or clamped–clamped ends. Yang and Chen [15] applied the method of multiple scales to
present analytically vibration and stability of an axially moving beam constituted by the viscoelastic constitutive law of an
integral type. Chen and Yang [16] investigated an axially accelerating viscoelastic beam constrained by simple supports
with rotational springs. In Chen et al. [13], Chen and Yang [14], and Chen and Yang [16], the Kelvin model containing the
partial time derivative was used to describe the viscoelastic behavior of beam materials. Compared with Kelvin model, the
standard linear solid model is more typical and representative, meanwhile this model can degenerate to the Kevin or
Maxwell model by varying alternative of the stiffness of beam. In addition, if the viscoelastic materials are constituted by
Botlzmann’s superposition principle with the relaxation modulus expressed by the exponential function, the governing
equation has the similar form as the standard linear solid model [15]. Mockensturm and Guo [17] convincingly argued that
the Kelvin model generalized to axially moving materials should contain the material time derivative to account for the
energy dissipation in steady motion. Based on the Kelvin model containing the material time derivative, Ding and Chen [18]
employed the method of multiple scales to study the stability of an axially accelerating viscoelastic beam. Chen and Wang
[19] revisited the problem in [18] via an asymptotic approach proposed by Maccari [20] and yield the same outcomes. The
present investigation performs an asymptotic analysis for an axially accelerating viscoelastic beam based on the standard
linear solid model with the material time derivative to represent the beam viscoelastic material property.

In spite of the fact that there have been many approximately analytical investigations on stability of axially accelerating
beams, there are very limited researches on the topic to confirm the analytical results via the numerical solutions to the
governing equations. Ding and Chen [18] studied the stability in principal parametric resonance of an axially accelerating
viscoelastic beam via the finite difference scheme. Chen and Wang [19] presented the comparison between the analytical
results and the numerical results in both summation and principal parametric resonances via the differential quadrature
scheme. However, only the Kelvin model was considered in [18,19]. In the present investigation, the authors develop a
differential quadrature scheme for an axially accelerating viscoelastic beam constituted by the standard linear solid model
and contrast the approximately analytical results with the numerical ones.

The present paper is organized as follows. Section 2 presents the mathematical model. Section 3 proposes an asymptotic
analysis approach to investigate stability in the model presented in Section 2. Section 4 develops a differential quadrature
scheme to solve the governing equation in Section 2. Section 5 presents numerical examples to demonstrate the effects of
some parameters on the stability boundaries in the summation and principal parametric resonances, and compares the
analytical and numerical results. Section 6 ends the paper with the concluding remarks.
2. The governing equation

A uniform axially moving viscoelastic beam, with density r, cross-sectional area A, moment of inertial I and initial
tension P0, travels at time-dependent axial transport speed g(t) between two transversely motionless ends separated by
distance L. Consider only the bending vibration described by the transverse displacement v(x, t), where t is the time and x is
the axial coordinate. The physical model is shown in Fig. 1. Newton’s second law of motion yields

rA
d2v

dt2
� P0v;xx þM;xx ¼ 0 ð1Þ

where the material time derivative is introduced by defining differential operator d/dt as

d

dt
¼

q
qt
þ g q

qx
ð2Þ

where speed g(t) is equal to dx/dt, and M(x, t) is the bending moment given by

Mðx; tÞ ¼ �

Z
A

zsðx; z; tÞdA ð3Þ
Fig. 1. The physical model of an axially accelerating beam.
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Fig. 2. The standard linear solid model.
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where the z–x plane is the principal plane of bending, and s(x, z, t) is the disturbed normal stress. The viscoelastic material
of the beam obeys the standard linear solid model shown in Fig. 2, which contains three parameters. For one-dimensional
problem, the stress–strain relationship of the model is expressed in a differential form as

ðE1 þ E2Þsþ Z
ds
dt
¼ E1E2eþ E1Z

de
dt

ð4Þ

where E1 and E2 are the stiffness of the beam, Z is the viscosity of dashpot and e(x ,z, t) is the axial strain. The standard
linear solid model can be used to describe the behavior of linear viscoelastic materials of solid type with limited creep
deformation. It can reduce to Kelvin model (E1-N and E2a0) or Maxwell model (E2=0 and E2a0). The material time
derivative is employed in standard linear solid model by substituting Eq. (2) into Eq. (4), and the resulting equation is

ðE1 þ E2Þsþ Zs;t þ Zgs;x ¼ E1E2eþ E1Ze;t þ E1Zge;x ð5Þ

Substituting Eqs. (2) and (3) into Eq. (1) leads to

rAðv;tt þ 2gv;xt þ _gv;x þ g2v;xxÞ � P0v;xx �
q2

qx2

Z
A

zsðx; z; tÞdA ¼ 0 ð6Þ

Introduce the dimensionless variables and parameters

v2
v

L
; x2

x

L
; t2t

ffiffiffiffiffiffiffiffiffiffiffi
P0

rAL2

s
; g2g

ffiffiffiffiffiffiffi
rA

P0

s
; Bðx; tÞ ¼ 1

P0L

Z
A

zsðx; z; tÞdA ð7Þ

and then Eq. (6) can be cast into the dimensionless form

v;tt þ 2gv;xt þ _gv;x þ ðg2 � 1Þv;xx � B;xx ¼ 0 ð8Þ

For small deflections, the strain–displacement relation is

eðx; z; tÞ ¼ �z
q2vðx; tÞ

qx2
ð9Þ

Substituting Eq. (6) into Eq. (5) leads to

ðE1 þ E2Þsþ Zs;t þ Zgs;x ¼ �zðE1E2v;xx þ E1Zv;xxt þ E1Zgv;xxxÞ ð10Þ

In order to nondimensionalize and to eliminate s, multiplying the both sides of Eq. (10) with z/P0L and then integrating
the resulting equation yield

1

P0L
ðE1 þ E2Þ

Z
A

zsdAþ

Z
A

zs;t dAþ Zg
Z

A
zs;x dA

� �
¼ �

1

P0L

Z
A

z2 dAðE1E2v;xx þ E1Zv;xxt þ E1Zgv;xxxÞ ð11Þ

Substituting (9) into Eq. (11) leads to

ðE1 þ E2ÞBþ ZB;t þ ZgB;x ¼ �
1

P0L
ðE1E2Iv;xx þ E1IZv;xxt þ E1IZgv;xxxÞ ð12Þ

where I is the moment of inertial and expressed as

I ¼

Z
A

z2 dA ð13Þ

Introduce the dimensionless variables and parameters

eZ2 Z
E1 þ E2

ffiffiffiffiffiffiffiffiffiffiffi
P0

rAL2

s
; a ¼

E1E2I

P0L2ðE1 þ E2Þ
; b ¼

E1I

P0L2
ð14Þ

here b can be also expressed as b=a(1+E1/E2). Then Eq. (12) can be cast into the dimensionless form

Bþ eZðB;t þ gB;xÞ ¼ �av;xx � eZbðv;xxt þ gv;xxxÞ ð15Þ

where bookkeeping device e is a small dimensionless parameter accounting for the fact that the viscosity is very small.
Assume that the beam is with simple supports at both ends. Then the boundary conditions in dimensionless form are

vð0; tÞ ¼ 0; v;xxð0; tÞ ¼ 0; vð1; tÞ ¼ 0;v;xxð1; tÞ ¼ 0 ð16Þ
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In the present investigation, the axial speed is assumed to be a small simple harmonic variation about the constant
mean speed:

gðtÞ ¼ g0 þ eg1 sinot ð17Þ

where g0 is the constant mean speed, and eg1 and o are, respectively, the amplitude and the frequency of the axial speed
variation, all in the dimensionless form. Here the bookkeeping device e is used to indicate the fact that fluctuation
amplitude is small, with the same order as the dimensionless viscosity. Substituting Eqs. (17) and (15) into Eq. (9) and
neglect higher order e terms in the resulting equation yield

Mv;tt þ Gv;t þ Kv ¼ �e½g1ð2 sinotv;xt þo cosotv;x þ 2g0 sinotv;xxÞ � ZðB;xxt þ g0B;xxx � bv;xxxxt � bg0v;xxxxxÞ� ð18Þ

where the mass, gyroscopic, and linear stiffness operators are, respectively, defined as

M ¼ I; G ¼ 2g0

q
qx
; K ¼ ðg2

0 � 1Þ
q2

qx2
þ a

q4

qx4
ð19Þ

3. Asymptotic analyses on stability

Under certain conditions, the straight configuration of the beam may become unstable. The conditions will be located
via the analysis on the stability of the zero solution if Eqs. (15) and (18). If e=0 in Eq. (18), under boundary conditions (16),
the natural frequencies of the undisturbed gyroscopic continuous system

Mv;tt þ Gv;t þ Kv ¼ 0 ð20Þ

can be determined. Previous studies found that, for elastic beams [12] and the Kelvin viscoelastic beams [18,19], if the axial
speed variation frequency o approaches the sum of any two natural frequencies of Eq. (20), the summation parametric
resonance may occur. Therefore it can be expected that the summation parametric resonance occurs for the viscoelastic
beams constituted by the standard linear solid model. A detuning parameter m is introduced to quantify the deviation of o
from om+on (mrn), and o is described by

o ¼ om þon þ em ð21Þ

If ea0, as e is rather small to investigate the summation parametric resonance, it is usually assumed that the response is
mainly influenced by two corresponding modes and thus the effects of other modes can be neglected. Therefore, the
solution to Eq. (18) may take the following form:

vðx; tÞ ¼ cmðx; t; eÞ eiomt þcnðx; t; eÞ eiont þ cc ð22Þ

where t=et is the slow time scale and cc denotes the complex conjugate of all preceding terms on the right hand side of an
equation. Functions cm(x,t,e) and cn(x,t,e) can be expanded in the power series of e

ck ¼ c0k þ ec1k þ ðe2Þ ðk ¼ m;nÞ ð23Þ

The chain rule of partial derivatives leads to

q
qt
½cke7iokt� ¼ ð7iokck þ eck;tÞ e

7iokt ðk ¼ m;nÞ ð24Þ

Substituting Eq. (23) into Eq. (22) leads to

vðx; tÞ ¼ ðc0m þ ec1mÞ e
iomt þ ðc0n þ ec1nÞ e

iont þ cc þ Oðe2Þ ð25Þ

Expanding B in power series of e

B ¼ B0 þ eB1 þ Oðe2Þ ð26Þ

Inserting Eqs. (17), (21), (25) and (26) into Eq. (15) equating the coefficients at the order e0 and e1 in the resulting
equation yield, at order e0

B0 ¼ �aðc0m
00 eiomt þc0n

00 eiont þ ccÞ ð27Þ

at order e1

B1 þ ZB0;t þ g0ZB0;x ¼ ð�ibZomc0m
00 � ac1m

00 � bg0Zc
000

0mÞe
iomt þ ð�ibZonc0n

00 � ac1n
00 � bg0Zc

000

0nÞe
iont þ cc þ OðeÞ ð28Þ

Substituting Eq. (27) into Eq. (28) leads to

B1 ¼ ½Zða� bÞðiomc0m
00 þ g0c

000

0mÞ � ac1m
00 �eiomt þ ½Zða� bÞðionc0n

00 þ g0c
000

0nÞ � ac1n
00 �eiont þ cc þ OðeÞ ð29Þ
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Substituting Eqs. (27) and (29) into Eq. (26) leads to

B ¼ B0 þ eB1

¼ �aðc0m
00 eiomt þ c0n

00 eiontÞ þ e½Zða� bÞðiomc0m
00 þ g0c

000

0mÞ � ac1m
00 �eiomt

þ e½Zða� bÞðionc0n
00 þ g0c

000

0nÞ � ac1n
00 �eiont þ cc þ Oðe2Þ ð30Þ

Inserting Eqs. (25) and (30) into Eqs. (18) and (16) equating the coefficients of eiokt (k=m, n) at the order e0 and e1 in the
resulting equation yield, at order e0

�o2
k Mc0k þ iokGc0k þ Kc0k ¼ 0 ðk ¼ m;nÞ ð31Þ

c0kð0; tÞ ¼ c0kð1; tÞ ¼ c0k
00 ð0; tÞ ¼ c0k

00 ð1; tÞ ¼ 0 ðk ¼ m;nÞ ð32Þ

at order e1

�o2
mMc1m þ iomGc1m þ Kc1m ¼ �½

1
2ðom �onÞc0n

0 � ig0c0n
00 �g1eimt þ Zða� bÞðiomc

ð4Þ
0k þ g0c

ð5Þ
0mÞ

� 2ðiom
_c0m � g0

_c0m
0 Þ ð33Þ

�o2
nMc1n þ ionGc1n þ Kc1n ¼ �½

1
2ðon �omÞc0m

0 � ig0c0m
00 �g1eimt þ Zða� bÞðionc

ð4Þ
0n þ g0c

ð5Þ
0n Þ

� 2ðion
_c0n � g0

_c0n
0 Þ ð34Þ

c1kð0; tÞ ¼ 0; c1k
00 ð0; tÞ ¼ 0; c1kð1; tÞ ¼ 0; c1k

00 ð1; tÞ ¼ 0ðk ¼ m;nÞ ð35Þ

Assume the solution to Eq. (31) is in the following form

c0kðx; tÞ ¼ qkðtÞfkðxÞðk ¼ m;nÞ ð36Þ

then

�o2
k Mjk þ iokGjk þ Kjk ¼ 0 ðk ¼ m;nÞ ð37Þ

fkð0Þ ¼ 0; fk
00 ð0Þ ¼ 0; fkð1Þ ¼ 0; fk

00 ð1Þ ¼ 0: ð38Þ

Under boundary (38), Eq. (37) has the solution [7,16]

fkðxÞ ¼ eib1kx �
ðb2

4k � b2
1kÞðe

ib3k � eib1k Þ

ðb2
4k � b2

2kÞðe
ib3k � eib2k Þ

eib2kx �
ðb2

4k � b2
1kÞðe

ib2k � eib1k Þ

ðb2
4k � b2

3kÞðe
ib2k � eib3k Þ

eib3kx

� 1�
ðb2

4k � b2
1kÞðe

ib3k � eib1k Þ

ðb2
4k � b2

2kÞðe
ib3k � eib2k Þ

�
ðb2

4k � b2
1kÞðe

ib2k � eib1k Þ

ðb2
4k � b2

3kÞðe
ib2k � eib3k Þ

" #
eib4kx ð39Þ

where bjk (j=1,2,3,4; k=m, n) are four roots of the following four-order algebraic equation

�o2
k � 2g0okbk � ðg2

0 � 1Þb2
k þ ab4

k ¼ 0 ð40Þ

Substituting Eq. (36) into Eqs. (33) and (34) leads to

�o2
mMc1m þ iomGc1m þ Kc1m ¼ �½

1
2ðom �onÞjn

0 � ig0jn
00 �qng1eimt þ Zða� bÞðiomjð4Þm þ g0jð5Þm Þqm

� 2ðiomjm þ 2g0jm
0 Þ _qm ð41Þ

�o2
nMc1n þ ionGc1n þ Kc1n ¼ �½

1
2ðon �omÞjm

0 � ig0jm
00 �qmg1eimt þ Zða� bÞðionjð4Þn þ g0jð5Þn Þqn

� 2ðionjn þ g0jn
0 Þ _qn ð42Þ

Introduce an inner product

/f1; f2S ¼
Z 1

0
f1ðxÞf 2ðxÞdx ð43Þ

for complex functions f1 and f2 defined on [0,1]. Under the boundary conditions of vanishing the function values and the
second-order x-partial derivatives, both M and K are symmetric in the sense

/Mf1; f2S ¼ /f1;Mf2S; /Kf1; f2S ¼ /f1;Kf2S ð44Þ

G is skew symmetric in the sense

/Gf1; f2S ¼ �/f1;Gf2S ð45Þ

For function fk(x) satisfying Eq. (39), the distribution law of the inner product, and Eq. (45) with Eqs. (44) and (43) yield

/�o2
kMc1k þ iokGc1k þ Kc1k;fkS ¼ /c1k;�o2

kMfk þ iokGfk þ KfkS ¼ 0 ðk ¼ m;nÞ ð46Þ
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Taking both sides of Eqs. (41) and (42) inner product with fk(x) (k=m, n) and using Eq. (46) give

_qm þ Zðb� aÞcmmqm þ g1dmnqneimt ¼ 0

_qn þ Zðb� aÞcnnqn þ g1dnmqmeimt ¼ 0 ð47Þ

where

ckk ¼
/iokf

ð4Þ
k þ g0f

ð5Þ
k ;fkS

2/iokfk þ g0fk
0 ;fkS

ðk ¼ m;nÞ

dmn ¼ �
/ðon �omÞfn

0 þ 2ig0fn
00 ;fmS

4/iomfm þ g0fm
0 ;fmS

;

dnm ¼ �
/ðom �onÞfm

0 þ 2ig0fm
00 ;fnS

4/ionfn þ g0fn
0 ;fnS

ð48Þ

The coefficients dmn, dnm, and ckk (k=m, n) are determined by the natural frequencies and the modal function (39) of linear
system (20) under boundary condition, which are independent of the viscosity and the axial speed variation.

Express the solutions to Eq. (47) in polar form

qk ¼ SkðtÞ eimt=2 ðk ¼ m;nÞ ð49Þ

Substituting Eq. (49) into (47) yields

_Sm þ i
m
2

Sm þ Zðb� aÞcmmSm þ g1dmnSn ¼ 0

_Sn þ i
m
2

Sn þ Zðb� aÞcnnSn þ g1dnmSm ¼ 0 ð50Þ

Suppose that the solutions of Eq. (50) take the form

Sm ¼ smelt; Sn ¼ snelt ð51Þ

where sm and sn are real coefficients, and l is a complex to be determined later. Substituting Eq. (51) into Eq. (50) and taking
the complex conjugation of the second resulting equation yields

lþ i
m
2
þ Zðb� aÞcmm

h i
sm þ g1dmnsn ¼ 0

g1dnmsm þ l� i
m
2
þ Zðb� aÞcnn

h i
sn ¼ 0 ð52Þ

As a set of homogeneous linear algebraic equations of sm and sn, Eq. (52) possesses nontrivial solutions if and only if its
determinant of coefficient vanishes. That is

l2
þ Zðb� aÞðcmm þ cnnÞlþ i

m
2
þ Zðb� aÞcmm

h i
�i

m
2
þ Zðb� aÞcnn

h i
� g2

1dnmdmn ¼ 0 ð53Þ

For the roots of Eq. (53) with respect to l, if either of them has a positive real part, then the system is unstable. On the
contrary if both of them have negative real parts the system is stable. It is numerically demonstrated that ckk is a positive
real number. Separating real and imaginary parts in Eq. (53) can lead to two new equations. Then the instability condition
of the summation parametric resonance can obtained as

m2o4ðcmm þ cnnÞ
2 g2

1ReðdnmdmnÞ � ½Zðb� aÞ�2cmmcnn

ðcmm � cnnÞ
2
þ ðcmm þ cnnÞ

2
ð54Þ

after some algebraic manipulations. Namely, if the positive square root of the right term of inequality (54) is more than
modulus of m, the system is unstable. Based on inequality (54), one can develop the analytical expression of the instability
boundary in summation parametric resonance

1þ
ðcmm � cnnÞ

2

ðcmm þ cnnÞ
2

" #
m2 þ 4½Zðb� aÞ�2cmmcnn ¼ 4g2

1dnmdmn ð55Þ

More details have been presented by Chen and Yang [14].
If the axial speed variation frequency o approaches two times the any natural frequency of Eq. (20), the principal

parametric resonance may occur, herein o is described by

o ¼ 2ok þ em ð56Þ

Let m=n=k in Eq. (55), then stability boundary in the kth principal parametric resonance is described by

m2 þ 4½Zðb� aÞ�2c2
kk ¼ 4g2

1jdkkj
2 ð57Þ
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where ckk is expressed in Eq. (48), and

dkk ¼ �
/ig0fk

00 ;fkS
2/iokfk þ g0fk

0 ;fkS
ð58Þ

4. Differential quadrature investigations on stability

The differential quadrature scheme will be employed to solve numerically equation

v;tt þ 2gv;xt þ _gv;x þ g2v;xx � v;xx � B;xx ¼ 0 ð59Þ

Bþ ZðB;t þ gB;xÞ ¼ �av;xx � Zbðv;xxt þ gv;xxxÞ ð60Þ

Eq. (60) is the same as Eq. (15) with the exception that e=1 here. Other numerical methods such as the Galerkin finite-
element method [21] and the finite difference method [18] may also serve the proposition.

Introduce N sampling points as

xi ¼
1

2
1� cos

ði� 1Þp
N � 1

� �
ði ¼ 1;2; . . . ;NÞ ð61Þ

The quadrature rules for the derivatives of a function at the sampling points yield [22,23]

v;xðxi; tÞ ¼
XN

j¼1

Að1Þij vðxj; tÞ; v;xxðxi; tÞ ¼
XN

j¼1

Að2Þij vðxj; tÞ; v;xxxðxi; tÞ ¼
XN

j¼1

Að3Þij vðxj; tÞ ð62Þ

B;xðxi; tÞ ¼
XN

j¼1

Að1Þij Bðxj; tÞ; B;xxðxi; tÞ ¼
XN

j¼1

Að2Þij Bðxj; tÞ ði; j ¼ 1;2; . . . ;NÞ ð63Þ

where the weighting coefficients are the expression

Að1Þij ¼

QN
k¼1;kaiðxi � xkÞ

ðxi � xjÞ
QN

k¼1;kajðxj � xkÞ
ði; j ¼ 1;2; . . . ;N; jaiÞ ð64Þ

and the recurrence relationship

AðrÞij ¼ r Aðr�1Þ
ii Að1Þij �

Aðr�1Þ
ij

xi � xj

" #
ðr ¼ 2;3;4;5; i; j ¼ 1;2; . . . ;N; jaiÞ

AðrÞii ¼ �
XN

k¼1;kai

AðrÞik ðr ¼ 1;2;3;4;5; i ¼ 1;2; . . . ;NÞ ð65Þ

Substituting Eqs. (62) and (63) into Eqs. (59) and (60) leads to

€vi þ 2g
XN

j¼1

Að1Þij
_vj þ _g

XN

j¼1

Að1Þij vj þ ðg2 � 1Þ
XN

j¼1

Að2Þij vj �
XN

j¼1

Að2Þij Bj ¼ 0 ði ¼ 1;2; . . . ;NÞ ð66Þ

Z _Bi þ Bi þ Zg
XN

j¼1

Að1Þij Bj ¼ �a
XN

j¼1

Að2Þij vj � Zb
XN

j¼1

Að2Þij
_vj � Zbg

XN

j¼1

Að3Þij vj ði ¼ 1;2; . . . ;NÞ ð67Þ

where

viðtÞ ¼ vðxi; tÞ; BiðtÞ ¼ Bðxi; tÞ ð68Þ

In order to overcome difficulties in the implementation of the boundary conditions, the idea of incorporating the
boundary conditions into the weighting coefficient matrices [24] is adopted. The simplest of the boundary conditions to
invoke in Eqs. (66) and (67) is the condition of zero displacement (v) at a simply supported edge. This is done by simply
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ignoring the corresponding grid points in Eqs. (66) and (67). For the boundary condition (16), consider the DQ analogue of
the second derivative with respect to x at the grid points on a line parallel to the x-axis.

½Að2Þ� ¼

Að2Þ11 Að2Þ12 � � � Að2Þ1;N�1 Að2Þ1N

Að2Þ21 Að2Þ22 � � � Að2Þ2;N�1 Að2Þ2N

^ ^ & ^ ^

Að2ÞN�1;1 Að2ÞN�1;2 � � � Að2ÞN�1;N�1 Að2ÞN�1;N

Að2ÞN1 Að2ÞN2 � � � Að2ÞN;N�1 Að2ÞNN

2
666666664

3
777777775

ð69Þ

Let the modified weighting coefficient matrix in Eq. (69) now be written as

½ ~A
ð2Þ
� ¼

0 0 � � � 0 0

Að2Þ21 Að2Þ22 � � � Að2Þ2;N�1 Að2Þ2N

^ ^ & ^ ^

Að2ÞN�1;1 Að2ÞN�1;2 � � � Að2ÞN�1;N�1 Að2ÞN�1;N

0 0 � � � 0 0

2
6666664

3
7777775

ð70Þ

and let the weighting coefficient matrix of the third-order derivatives be modified as

½ ~A
ð3Þ
� ¼ ½Að1Þ�½ ~A

ð2Þ
� ð71Þ

Let Eqs. (66) and (67) be rewritten replacing the original x-derivative weighting coefficients by the modified coefficients

€vi þ 2g
XN

j¼1

Að1Þij
_vj þ _g

XN

j¼1

Að1Þij vj þ ðg2 � 1Þ
XN

j¼1

~A
ð2Þ

ij vj �
XN

j¼1

~A
ð2Þ

ij Bj ¼ 0 ði ¼ 1;2; . . . ;NÞ ð72Þ

Z _Bi þ Bi þ Zg
XN

j¼1

Að1Þij Bj ¼ �a
XN

j¼1

~A
ð2Þ

ij vj � Zb
XN

j¼1

~A
ð2Þ

ij
_vj � Zbg

XN

j¼1

~A
ð3Þ

ij vj ði ¼ 1;2; . . . ;NÞ ð73Þ

From the aforementioned discussion, the DQ analogue equations (72) and (73) may be written in terms of modified
weighting coefficients. Thus

€vi þ 2g
XN�1

j¼2

Að1Þij
_vj þ _g

XN�1

j¼2

Að1Þij vj þ ðg2 � 1Þ
XN�1

j¼2

~A
ð2Þ

ij vj �
XN�1

j¼2

~A
ð2Þ

ij Bj ¼ 0 ði ¼ 2;3; . . . ;N � 1Þ ð74Þ

Z _Bi þ Bi þ Zg
XN�1

j¼2

Að1Þij Bj ¼ �a
XN�1

j¼2

~A
ð2Þ

ij vj � Zb
XN�1

j¼2

~A
ð2Þ

ij
_vj � Zbg

XN�1

j¼2

~A
ð3Þ

ij vj ði ¼ 2;3; . . . ;N � 1Þ ð75Þ

In the present investigation, the fourth-order Runge-Kutta method was used to integrate ordinary differential equations
and analyze the stability of system. The initial conditions for Eqs. (74) and (75) are chosen as

vðx;0Þ ¼ 0:0001xð1� xÞ; v;tðx;0Þ ¼ 0; Bðx;0Þ ¼ 0 ð76Þ

In the differential quadrature method, let N=7. To decide the stability, choose T1=20, T2=2T1 and T=60. In the first
principal parametric resonance, m=2o1�o. In the second principal parametric resonance, m=2o2�o. In the summation
parametric resonance, m=o1+o2�o. For the given parameters and initial conditions, Eqs. (74) and (75) can be numerically
solved via the fourth-order Runge-Kutta. After a time interval [0, T1] to remove the transient response, the maximum beam
center displacements V1 and V2 are, respectively, recorded for time intervals [T1, T2] and [T2, T]. If V1 is bigger than V2, the
parametric resonance is stable. If V1 is smaller than V2, the parametric resonance is unstable. Varying the parameters, one
can locate the stability boundary in the parameter space.

5. Numerical examples

In this paper, the stiffness of an axially moving beam a=0.64 is specified. Eqs. (14), (39), (40), (48), and (56) are helpful
for analytical computation. Actually, E1 and E2 should be given an actual physical value, e.g., 1�1010(N/m2). Some other
values of E1 and E2 are specified to examine the changing tendencies, even if the parameter values cannot depict the actual
physical meanings.

Next to demonstrate the effects of stiffness, viscosity, and constant mean speed on the instability boundary in
summation and principal parametric resonances. Fig. 3 shows the effects of stiffness E1 and E2, respectively, in summation
resonance. Figs. 4 and 5 show the effects of the viscosity and the mean speed in summation and principal parametric
resonances, respectively. Fig. 6 compares the instability boundaries in summation parametric resonances with those in the



ARTICLE IN PRESS

Fig. 3. The effects of stiffness in summation parametric resonance (Z=0.0003 and g0=2.0): (a) the effects of stiffness E1 on stability boundaries and (b) the

effects of stiffness E2 on stability boundaries.

Fig. 4. The effects of viscosity on instability boundaries (b=1.28 and g0=2.0): (a) the summation parametric resonance and (b) the first principal

parametric resonance.

Fig. 5. The effects of constant mean speed on instability boundaries (b=1.28): (a) the summation parametric resonance (Z=0.0003) and (b) the first

principal parametric resonance (Z=0.0007).
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first principle parametric resonances. Both analytical (in line) and numerical (in symbol markers) results are given in
Figs. 3–6.

In Figs. 3–5, the instability boundaries in the summation and the first principal parametric resonance have the same
changing trend. The increasing stiffness E1 makes the instability boundaries move towards the increasing direction of g1 in
plane m–g1 and the instability regions become narrow. However, the stiffness E2 has an opposite effect on the instability
boundaries. The relationship between b and E1 (E2), that b increases with the increase of E1 and b decreases with the
increase of E2. Apparently, the direct effects on the instability boundaries are the coefficient b and instability regions
become narrow with the coefficient b increasing. The viscosity Z increasing makes instability regions become narrow in
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Fig. 6. The comparison of instability boundaries between summation and first principle parametric resonance (b=1.28, g0=2.0 and Z=0.0011).
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both summation resonance and principal parametric resonances, as shown in Fig. 4. The conclusions are accordant with the
foregoing statements just under Eq. (55).

There is implicit effect of the constant mean speed on instability boundary, which cannot be directly achieved from
expression (55) or (57). Numerical examples show that the instability boundaries move towards the decreasing direction of
g1 in plane m–g1 and the instability regions become narrow in the summation resonance with constant mean speed g0

increasing, but there is an opposite effect in the principal resonance in Fig. 5. Fig. 6 indicates that instability region of
summation resonance is dramatically smaller than those of the first principal resonance under the same conditions.

The numerical examples show that changing trends predicted by both methods are qualitatively same. It demonstrates
that the difference is very small in the first principal parametric resonances, but the difference in the summation
parametric resonance is rather large.

6. Conclusions

This paper is devoted to parametric vibration of an axially accelerating beam constituted by the standard linear solid
model using the material time derivative. The beam moves at an axial speed fluctuating harmonically about a constant
mean speed. An asymptotic analysis is proposed to determine the stability condition, which is the same as that derived
from the method of multiple scales. The differential quadrature scheme is developed to locate the stability boundary
numerically. The analytical results are compared with the numerical calculations:
(1)
 Based on analytical expressions (55) and (57), with the stiffness coefficient E1 increasing, the instability regions will
become narrow. On the contrary, the decreasing stiffness coefficient E2 leads the instability regions to become narrow.
In addition, the instability regions will become narrow with the increase of viscosity Z.
(2)
 When the material time derivative is used in the constitutive relation, the increasing constant mean speed leads to the
additional viscosity. This conclusion cannot be achieved directly via the analytical conditions. Based on numerical
results, with the increasing constant mean speed, the instability regions become narrow in the summation parametric
resonance but there is an opposite effect in the principal resonance for standard linear solid model.
(3)
 Both analytical and numerical results indicate that instability region of summation resonance is dramatically smaller
than those of the first principal resonance under the same conditions.
(4)
 The results compared indicate that the changing trend predicted by the numerical simulations is qualitatively same as
by the analytical analysis.
(5)
 Quantitatively, the analytical results are validated by the numerical calculations in the principal parametric resonance,
while there are differences in the summation parametric resonance is rather large.
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